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ABSTRACT 
 
Statistical Process Control (SPC) aims at quality improvements through reduction of 
variances. The best known tool of SPC is the control chart. Over the years the control chart 
has proved to be a successful practical technique for monitoring process measurements. 
However, its usefulness in practice is limited to those situations where it can be assumed that 
successive measurements are independently distributed, whereas most data sets encountered 
in practice exhibit some form of serial correlation.  
The question that is considered in this paper is what control chart methods should be used to 
monitor serially correlated data and how the signals on such charts should be interpreted. 
 
1. STOCHASTIC PROCESS  
 
Classical control charts assume no correlation between successive observations of the quality 
characteristic. In this section we define in a more precise manner what is meant by correlation 
between repeatedly observed measurements of a single quality characteristic. We need to know 
how to estimate the serial correlation, in case it exists, and how to study its effect on classical 
SPC charts. To achieve these goals, the concept of a stochastic process is first necessary. 
A stochastic process ( ) }{ IttY ∈,  is a family of indexed random variables, where I is called the 
index set. Sometimes we will refer to the mechanism generating the stochastic process simply 
as the process, which can be understood in double sense of the underlying stochastic process 
that the quality characteristic being modeled follows, or as the production process itself, 
which in turn generates the stochastic process (i.e. the quality characteristic).  In applications 
in this paper, t will relate to the discrete points of time at which an observation is obtained by  
sampling (i.e. the index set is }{ ,...2,1,0,1,2..., −−=I ) and the stochastic process is said to be a 
discrete-time stochastic process. If { }∞+<<∞−= ttI : , the process is a continuos-time 
stochastic process. For discrete-time stochastic processes, it is customary to denote them as 

}{ IttY ∈ , that is, a subscript is used for discrete-time indices. Discrete-time processes can be 
identified by describing the behavior of its tth  element. Thus, we can write, for example, 
    ttY εμ +=    
Implying that for the given process (Shewhart's model in this case) the equation holds for all 
discrete points in time t. In this case, the time between observation h equals Δt. 
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A stochastic process can be thought of as a function of two arguments: namely, 
( ){ }ς∈∈ wItwtY ,,, , where ς  is the sample space of the random variables ( )tY . It is 

important to point out that for fixed ( ),., tYIt∈  is a random variable; for fixed ( )wYw .,,ς∈  is 
a function of time called a realization, or trajectory of the process. A time series is a set of 
observations, or realization, of a discrete-time stochastic process. In basic probability theory, 
this is analogous to the notion of a single observed value of a random variable (y) compared 
to the random variable itself (Y). The set of all possible realizations of a stochastic process is 
called the ensemble of the process. 
As in many other areas of statistics, to perform valid statistical inferences from a stochastic 
process, we need some notion of how repeatable the underlying random experiment is under 
identical conditions. For example, one such statistical inference could be to predict to where a 
quality characteristic will move in the near future. The only information available to us is a 
single realization of a stochastic process, the values recorded of the quality characteristic in 
the past. If this process is such that its random variables differ radically at different points of 
time, no inference could be drawn from a single realization since the probabilistic properties 
of the process during the period of time when the observations were taken cannot be 
generalized to other periods of time. For the class of models studied in this paper, the notion 
that we need to make valid inferences is called stationary. 
A stochastic process is strictly stationary if for any integer 1≥k , the joint distribution of 
{ }

kttt YYY ,...,,
21

 is identical to the distribution of { }τττ +++ kttt YYY ,...,,
21

, where ItIt ii ∈+∈ τ, .Thus 
the stochastic properties of the process are unaffected by changes in the time origin. If in this 
definition we look at the case k=1, we note that strict stationarity implies that the distribution of 

tY  is the same as the distribution for for τ+tY . Therefore, strict stationary implies that the 
distribution of the random variables occurring at different points in time is identical. 
 
 
3. MEAN AND VARIANCE OF A STATIONARY PROCESS 
 
Since for a strictly stationary discrete-time process }{ ∞

∞−tY  the probability density function 
( )tYf  is the same for all t, that is,   

     ( ) ( )YfYf t =  
we have that  

    [ ] ( )∫
∞

∞−
== dyyyfYE tμ  

    [ ] ( ) 222 μσ −== ∫
∞

∞−
dyyfyYVar t . 

Thus μ  gives the long-run or asymptotic average level of the process at every time t and 2σ  
gives the long run dispersion of the process at every time t. These long-run quantities are obtained 
over the ensemble of the stochastic process, which is the population from which we sample. For 
example, [ ]tYE  can be thought as the level of the process at time t averaged over an infinitely 
large number of possible realizations. The corresponding point estimates are given by 
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where N denotes the length of the time series observed. 
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4. AUTOCOVARIANCE AND AUTOCORRELATION  
 
The prefix auto means a reflexive act upon oneself, thus autocovariance is the covariance that 
a process has "with itself". The autocovariance function ( )kt ,γ  gives a measure of linear 
association (covariance) between two variables of the same process, tY  and ktY + , that are 
separated k period of lags, as a function of k. For any discrete-time process, we define 
 
 [ ] [ ]( ) [ ]( )[ ]ktktttkttkt YEYYEYEYYCov +++ −−== ,,γ  for ,...2,1,0 ±±=k  
 
For a strictly stationary process, the mean tμ  is constant for all times t, and the 
autocovariance reduces to 
 
 [ ] ( )( )[ ]μμγγ −−=== ++ kttkjjkkt YYEYYCov ,,  for ,...2,1,0 ±±=k  
 
so the autocovariance depends only on the lag k. Also, note that 

( )[ ] ( ) 22
0 σμγ ==−= tt YVarYE . 

 
It is usually better to scale the autocovariance into a unitless quantity by dividing by the 
process variance. For a stationary process, 

 

   
0γ

γρ k
k =  for ,...2,1,0 ±±=k  

where .11 ≤≤− kρ  Given that kk −= γγ  and kk −= ρρ  (i.e., the autocorrelation and 
autocovariance are even functions), it is common to plot these two functions only for positive 
lags. Both the autocovariance and the autocorrelation at lag k give a measure of the degree of 
linear association between two random variables of the same process that are separated k periods. 
 
When considering relations between random variables, it is useful to recall the following 
implications: 
 

1. If tY  and ktY +  are independent, they are uncorrelated (i.e., 0=kρ  for all k) 
2. If  tY  and ktY +  are correlated (i.e, 0≠kρ  for some k), tY  and ktY +  are dependent. 

 
The direction of the implications is important; uncorrelated random variables  
may or may not be independent. Correlation is a measure of linear association, so there might 
be some nonlinear association between uncorrelated variables.  
It should be pointed out that the standard error of the average ( )Y  is greatly affected by 
autocorrelation. Bartlett (1946) showed that 
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Thus if the stochastic process is completely uncorrelated ( 0=kγ for all k), the standard error 

of the average Y  is the usual N/σ . As the (positive) autocorrelation increases, so does the 
standard error and the point estimate Y  becomes less reliable.    
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Point estimates of the autocovariance function are given by the sample autocovariance 
function, computed as 
 

( )( )YyYy
N

c kt

kN

t
tkk −−== +

−

−
∑

1

1γ̂  ,...2,1,0=k   (1.6) 

 
Similarly, the sample autocorrelation function is given by 
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5. NEED FOR STATIONARITY 
 
Note that the point estimates ,,ˆ, 2

kcY σ  and kr  are computed based on a single realization of 
the process (i.e., they are computed based on time-series data). Inferences based on a single 
realization are possible because the process is stationary.  
A different form of stationarity is called weakly or covariance stationarity. A process is 
weakly stationary if only its first two moments (mean and covariance) are finite and 
independent of time (in such case the covariance depends only on the lag (. If each tY  is 
normally distributed and the process is weakly stationary, the process is strictly stationary. As 
it turns out, the type of stochastic models we study are fully characterized by their first two 
moments, so when we refer to stationarity we are referring to weakly stationarity. Weak 
stationarity can be better understood from an engineering point of view. If the mean of the 
process is constant, some process engineers would say that the process is stable. As will be 
seen, stability is a property of a deterministic dynamic system, whereas stationary is a 
properly related to a stochastic process. 
  
6. EFFECT OF AUTOCORRELATION ON SPC CHART PERFORMANCE 
 
As mentioned before, SPC control charts assume that if in control, the process has a constant 
mean and is completely uncorrelated. An important practical question is to investigate what 
happens with the performance of SPC charts as the process exhibits more and more serial 
correlation. As one process engineer said "almost every production process exhibits 
autocorrelation." 
The effect and implications of autocorrelation have been topics of frequent discussion and 
debate in SPC literature. For a detailed review please refer to Knoth and Schmid (2001). 
These issues are usually tackled numerically: take for instance the investigations by Johnson 
and Bagshaw (1974), Alwan (1992), Maragah and Woodall (1992), Wardell, Moskowitz and 
Plante (1994), Runger, Willemain and Prabhu (1995), Van Brackle III and Reynolds Jr. 
(1997) and Lu and Reynolds Jr. (1999). These and several other papers have tables and 
graphs usually referring to the ARL, to provide evidence that the performance of the 
appealing control schemes is severely compromised by the presence of serial correlation. 
Autocorrelation often reflects increased variability. Thus, the first two options to consider 
should be to remove the source of the autocorrelation or to use some type of process 
adjustment scheme such as those discussed by Box and Luceno (1997) and Hunter (1998). 
Control charting can be used in conduction with process adjustment schemes, and Box and 
Luceno (1997) emphasized that the two types of tools should be used together. Only if these 
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two options prove infeasible should one consider using stand-alone control charts for process 
monitoring such as those discussed by Lu and Reynolds (1999), Lin and Adams (1996) and 
Adams and Lin (1999). 
Positive autocorrelation at low lags is common because given the advances in sensor 
technologies, measurements are taken closer together in time. In discrete-part manufacturing, 
this sometimes implies that every part is measured. Observations that were generated close in 
time will tend to be similar, hence positive correlation at low lags will result. The following 
two examples illustrate the effect of autocorrelation on the performance of SPC charts. 
 
Example: Suppose that a process is described by 

( ) ( ) ...11 3
2

21 +−+−++= −−− ttttt ZZZZ λλλλλε  

tt ZY += μ  
where 10 ≤≤ λ  and tY  is the quality characteristic. There are two extreme cases: if 0=λ , 
the process is just Shewhart's process, where the observations are completely uncorrelated. If 

1=λ , the process is 
 

    1−++=+= tttt ZZY εμμ  
 
which evidently is highly correlated with 
 

   11 −− += tt ZY μ   
 

Vander Weil considers this process as λ  increases from 0 to 1. 
  

In the realizations of Figure 1.13b and d, a sustained shift in the mean of magnitude 5σ was 
induced at time 100; that is, the mean of the process changes according to 
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where in this example ,100,5 0 == tδ  and 100 =μ . This type of shift suddenly changes the 
mean of the process at time 0t . As can be seen from the figures, for 0=λ , detection should 
be almost immediate for any SPC chart and false alarms should be infrequent. For 8.0≥λ , 
the shift becomes   indistinguishable from the autocorrelation structure. Such positive 
autocorrelation will not necessarily worsen the detection capabilities of the charts as 
measured by the outARL  performance criterion (Goldsmith and Whitfield, 1961; Lu and 
Reynolds, 1999, 2001), but the number of false alarms will certainly increase. A chart that 
gives frequent false alarms will soon be abandoned.    
 
Example 2: The impact of autocorrelation on SPC chart performance was studied by Mragah 
and Woodall (1992), who consider the process 
 

ttt YY εφμ ++= −1     (1.8) 
 
where 11 <<− φ  is a parameter that allow us to define the autocorrelation in the  { }tY  
process. If 0=φ  in equation (1.8) we obtain a Shewhart's uncorrelated process. The 
autocorrelation function of this process is k

k φρ = , so the process is stationary as long as 
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1<φ . Note that for 1=φ , the process turns out to be a random walk. In the case of positive 
autocorrelation ( )10 <<φ , the movement of the process is smoother than that of an 
uncorrelated process. In the case of negative autocorrelation ( )01 <<− φ , the process shows 
a sawtooth pattern, which compared to Shewhart's process is much more crumpled. 
Maragah and Woodall (1992) computed by simulation the average number of out-of-control 
points that a Shewhart chart for individuals will generate it 25 observations of process (1.8) 
with 9.09.0 ≤≤− φ  are used to set the chart limits. A chart for individuals or a Y chart is one  
in which no subgroups are formed. The control limits are computed using the moving-range 
estimator1 2/RMˆ dY =σ , where 1MR −−= iii YY . Table 1 shows some of their results. 
 
Table 1: Number of Points Outside Limits Generated by a Shewhart Chart for 
Individuals Used to Monitor 25 Observations of an AR(1) Process, Obtained by 
Simulation   

φ  Average Std. Dev. 
-0.9 0.001 0.035 
-0.7 0.004 0.063 
-0.3 0.0027 0.166 
-0.1 0.058 0.241 
0.0 0.094 0.316 
0.1 0.135 0.377 
0.3 0.312 0.610 
0.7 1.807 1.887 
0.9 4.081 3.331 

 
Source: Maragah and Woodall (1992) 
 
Note that no shift in the mean was introduced while simulating the AR(1) process. From the 
table it can be seen that the number of out of control signals increases with increasing 
positive autocorrelation. For 9.0=φ , for example, an average of about four signals will occur 
in 25 samples. This is a much higher signal rate than the advertised average of one false 
alarm every 370 observations for Shewhart charts. Negative autocorrelation reduces the 
number if signals, but positive autocorrelation is much more common in practice as 
mentioned before. |Negative autocorrelation at low lags inflates the variance and hence the 
control limits width becomes too large, so detecting actual shifts becomes more difficult. 
The evident problem in Example 2 is that the limits were computed based on a variance 
estimate, which assumes that the process is uncorrelated. If 0>φ  (positive autocorrelation), 
adjacent observations will tend to be similar and the moving-range estimator will 
underestimate the variance of the process. This will result in limits that are too narrow, 
producing many alarms compare to the uncorrelated vase. This result is quite general: The 
within-sample variance estimator will underestimate the process variance in a positively 
autocorrelated process. If 0<φ  (negative autocorrelation), the moving-range estimator will 
overestimate the true variance, resulting in limits that are too wide, so very few signals will 
be obtained as opposed to the uncorrelated case. Note that this will have an impact on the 
detection capabilities of real shifts (i.e., wide limits will make the chart take much longer to 
detect shifts in the process mean).   
                     
1 This estimator was used because it is the most common estimator in control charts for individuals, but as 
mentioned below, it is not recommended for autocorrelated data.  
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7. CONCLUSIONS 
 
In recent years, statistical process control (SPC) for autocorrelated processes has received a 
great deal of attention, due in part to the increasing prevalence of autocorrelation in process 
inspection data. With improvements in measurement and data collection technology, 
processes can be sampled at higher rates, which often leads to data autocorrelation. It is well 
known that the run length properties of common SPC methods like CUSUM and X  charts 
are strongly affected by data autocorrelation, and the in-control average run length (ARL) can 
be much shorter than intended if the autocorrelation is positive. 
The most widely researched methods of SPC for autocorrelated processes are residual-based 
control charts, which involve fitting some form of autoregressive moving average (ARMA) 
model to the data and monitoring the model residuals (i.e., the one-step-ahead prediction 
errors). If the model is exact, then the model residuals are independent. Consequently, 
standard SPC control charts can be applied to the residuals with well understood in-control 
run length properties.  
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FIGURE 1. SINGLE REALIZATION (DARKER LINE) COMPARED TO OTHER POSSIBLE 
REALIZATIONS THAT MAKE UP THE ENSEMBLE OF A SINGLE STOCHASTIC PROCESS 
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FIGURE 2. TIME-SERIES PLOT AND SAMPLE AUTOCORRELATION FUNCTION OF 
THE DATA IN EXAMPLE 1, CHEMICAL PROCESS DATA 

FIGURE 3. TIME-SERIES PLOT AND SAMPLE AUTOCORRELATION FUNCTION OF 
THE DATA IN EXAMPLE 2, MACHINED PARTS DATA 

 
FIGURE 4. PROCESS WITH NO SUDDEN SHIFTS (a,c) AND WITH A SUDDEN SHIFT IN THE 
MEAN OCCURRING AT TIME t=100 (b, d), EXAMPLE 3. GRAPHS (a) AND (b) DISPLAY AN 
UNCORRECTED (λ=0); GRAPHS (c) AND (d) DISPLAY A HIGHLY AUTOCORRELATED 
(λ=0.8) SERIES 


